Can Biodegradable Polymer DES Be Better than 2nd Generation DES?

G. Nakazawa, MD Tokai Univ. Japan CV-HILLs

Receiving Research Grant From

Abbott Vascular Japan Boston Scientific Japan Medtronic Vascular Japan Cordis Johnson & Johnson Terumo Corp. Biosensors Japan

Advisory Contract With Abbott Vascular Japan

Terumo Corp.

Components of DES

Metal/Design

Intornation reaction

Thick struts ~ 81-140 microns

Incomplete healing

Polymer Non-erodable Erodable

Drug and Release kinetics Determine Antiproliferative effects

Drugs

Sirolimus-135μg Everolimus – 100 μg Paclitaxel- 80 μg Biolimus A9 – 225 μg

Localized Hypersensitivity Reaction in Cypher

Long Term Safety : Future Directions

Long-Term Safety of DES: Future Directions

General criteria for selecting a polymer for use as biomaterial

- Does not evoke an inflammatory/toxic response, disproportionate to its beneficial effect
- Is metabolized in the body after fulfilling its purpose, leave no trace
- Is easily processed into the final product form
- Has acceptable shelf life
- Is easily sterilized

Middleton JC and Tipton AJ. Biomaterials 2000, 21-236

Synthetic Biodegradable Polymers

- Poly(lactide) (PLA)
- Poly(glycolide) (PGA)
- Poly(glycolic-co-lactic acid) (PLGA)
- Poly(e-caprolactone) (PCL)
- Poly(dioxanone) (PDS)
- Poly(glycolide-co-trimethylene carbonate) (PGA-TMC)

Degradation Speed in Various Biodegredable Polymers

Material	Degradation Period
Polylactic acid (PLA)	9 months
Polyglycolic acid (PGA)	2-3 months
Poly-L-lactic acid (PLLA)	12-18 months
Poly(d,I-lactide/glycolide) copolymer (PGLA)	2-3 months
Polyorthoester (POE)	10 months (60%)
Poly(hydroxybutyrate/hydroxyvalerate)copolymer (PHBV)	6 months
Polycaprolactone (PCL)	36 months

Degradation

- The degradationabsorption mechanism is the result of many interrelated factors, including:
- The chemical stability of the polymer backbone
- The presence of catalysts

Additives

Impurities or plasticizers

- Geometry of the device
- Location of the device

 Factors which accelerate polymer degradation are the following:

- More hydrophilic monomers
- More hydrophilic, acidic endgroups
- More reactive hydrolytic group in the backbone
- Less crystallinity
- Small device size

Middleton JC and Tipton AJ. Biomaterials 2000, 2112365

PLA Metabolic Pathway

Fig. 10. Generic curves showing the sequence of polymer-molecular weight, strength, and mass-reduction over time [19].

Credit Factor Habi-Integin: Activity Laboratories Bioerodable polymer breaks down into Polymer degradation products ands side products. The side products, mostly responsible for toxic effects

Commandeur S, J Interven Cardiol 2006

Analyzing Laboratories

NOBORI Stent Platform

S-Stent[™] Platform:

- Stainless steel (129µm)
- Open cell design
- Quadrature-link[™] connectors
- Different models for small and large vessels

2.5-3.0mm (6 crown 2 link) $\bar{3}$

3.5mm (10 crown 2 link)

Biodegradable Drug/Carrier:

- Biolimus A9[®] / Poly (Lactic Acid) 50:50 mix
- abluminal surface only (contacts vessel wall)
- 11 µmeter coating thickness
- degrades in 9 months releasing CO_2 + water

BioMatrix Stent strut

Parylene C

Drug: Biolimus A9 15.6 µg/mm-stent length

NOBORI– Strut and polymer thickness

	(V X500 50µm 12 57 BES	U X500 50×m 12 57 ВЕ	4-Jan-11 HEC4300 MD15 İmi 25.0kV 1450 100um
DES	Xience Stent	ENDEAVOR® Stent	NOBORI
Stent Material	Cobalt Chromium	Cobalt Chromium	Stainless Steel
BMS Strut Thickness (in.)	0.0032"	0.0036"	0.0053"
BMS Strut Thickness (µm)	81µm	91µm	130µm
Polymer Thickness (µm)	7µm	бµт	18µm

Percent Stenosis in <u>Single DES</u> in Rabbit Iliac Arteries following Deployment of Cypher, Taxus and Nobori stents at 28-days

Fibrin Deposition in Single DES in Rabbit Iliac Arteries at 28-days

Overlapping Drug-Eluting Stents (Cypher, Taxus and Nobori) at 28-day

Fibrin Deposition in Overlapped DES at 28 days

Giant cells in Overlapped DES at 28-Days

Cypher™

Taxus™

Nobori™

Data from CVPath Institute, Inc.

Data from CVPath Institute, Inc.

Endothelial Function in NOBORI

Is the biodegradable polymer really better than durable ones?

Ongoing Pre-clinical Study

Study Title: Comparison of long-term safety following new generation drug eluting stents implantation in porcine coronary artery

<u>Purpose</u>: Hypersensitivity reaction due to lack of biocompatibility has emerged as one of the major concerns in 1st generation drug-eluting stents (DES). Newer generation DES has applied better polymer but the long-term safety is still unclear. The aim of this study is to evaluate the long-term safety following Xience V, Cypher, and Nobori DES in porcine coronary artery model.

Test Articles: 1. Xience V everolimus eluting stent

- 2. Cypher Select sirolimus eluting stent
- 3. Nobori Biolimus eluting stent

Collaborators

<u>Kobe University Graduate School of Medicine</u> Toshiro Shinke, MD (Study Co-Director) Daisuke Matsumoto, MD Hiromasa Otake, MD Junya Shite, MD

<u>Tokai University School of Medicine</u> Takeshi Ijichi, MD

Abbott Vascular Japan Masaharu Osa Masaru Uchiyama Akiji Kato Yoshihiro Odagawa

GOODMAN CO., LTD. Kentaro Asada Toshio Kimura G

HILLS MLD following Ach Challenge@1M

Maximum Change in MLD following Ach Challenge@1M

1-month group OCT Analysis Status

~ Neointima proliferation ~

~ Neointima proliferation ~

~ Neointimal coverage ~

~ Neointimal coverage ~

Follow-up OCT Results @ 3 months

~ Neointima proliferation ~

Cy-HILLS Follow-up OCT Results @ 3months

~ Neointima proliferation ~

1- and 3-month OCT Results

~ Neointima proliferation ~

Neointimal Uneveness Score

Results from Histologic Analysis will be coming soon...

Summary

- Improvements of DES technology allow us to treat more complex patients
- Although we intuitively feel that DES with biodegradable polymer would be favorable, it is still not clear that those are clinically better than DESs with good durable polymers

